sieve adsorbent to influence the course of an organic reaction was due to Dr, Z. Valenta (Department of Chemistry, U.N.B.) to whom we are also grateful for several helpful discussions during the course of this work.

References and Notes

(1) S. M. Csicsery, ACS Monogr., No, 171, Chapter 12 (1976).
(2) D. W. Breck, "Zeolite Molecular Sieves", Wiley-Interscience, New York, N.Y., 1973.
(3) L. Fieser and M. Fieser, 'Reagents for Organic Synthesis'", Vol. 1, Wiley, New York, N.Y., 1970, p 705.
(4) S. L. Regan and Chitra Koteel, J. Am. Chem. Soc., 99, 3837 (1977).
(5) R. A. Barrer and S. Wasilkowski, Trans Faraday Soc., 57, 1140 (1961).
(6) J. H. Rolston and K. Yates, J. Am. Chem. Soc., 91, 1469, 1477, 1483 (1969).

P. A. Risbood, D. M. Ruthven*
Department of Chemical Engineering
University of New Brunswick
Fredericton, N.B., Canada E3B 5 A3
Received October 12, 1977

Molecular Tweezers:

A Simple Model of Bifunctional Intercalation

Sir:

We have synthesized several bifunctional derivatives of caffeine ${ }^{1-7}$ and wish to report here that they appear to show the expected exponential increase in association constants anticipated for formation of "sandwich" π-system hydrophobic complexes (eq 1). We refer to these molecules as "molecular

tweezers". These molecules, 1-3, possess two of the three characteristics expected to enhance complexation of aromatic molecules in aqueous solution. (1) The rigid diyne unit prevents self-association ${ }^{8}$ of the two caffeine moieties. (2) The caf-feine-caffeine distance in the syn conformation, $\sim 7 \AA$, is proper for insertion of a π system between the rings. The third structural feature, a rigid syn conformation, is not met.

Association constants were determined by phase partitioning ${ }^{9}$ of the tweezer ($\sim 10^{-4} \mathrm{M}$) between ethylene dichloride (EDC) and aqueous pH 7 potassium phosphate buffer containing varying concentrations of 2,6-dihydroxybenzoate (DHBA) or 1,3-dihydroxy-2-naphthoate ${ }^{10}$ (DHNA). From EDC-buffer partition coefficients of the tweezers and the above experiment one may calculate an "apparent" association constant

$$
K_{A}^{\text {app }}=[\text { bound tweezer }] /[\text { acid }][\text { free tweezer }]
$$

One may then relate $K_{A}^{a p p}$ algebraically to various possible binding schemes as a function of the concentration of the

Figure 1, Calculated and experimental $K_{A}^{\text {app }}$ vs. [DHNA] plot for 3 and potassium 1,3-dihydroxy-2-naphthoate in pH 7 phosphate buffer: experimental points; $\mathbf{\Delta}$, calculated using $K_{1}=296 \mathrm{M}^{-1}, \mathrm{~K}_{2}=16.7 \mathrm{M}^{-1}$, $K_{3}=0$; \square, calculated using $K_{1}=296 \mathrm{M}^{-1}, K_{2}=47.5 \mathrm{M}^{-1}, K_{3}=10400$ M^{-1} (see Table II).

DHBA or DHNA salt and the various association constants. From the behavior of theophylline derivatives 4 and 5 one may calculate a best fit association constant (K_{3} below) for the formation of a stacking complexes. We use the necessity of invocation of a large K_{3} as evidence pro or con for the hypothesis.

Complexation of the simple theophylline derivative $\mathbf{4}$ and 5 with DHNA follows eq 2 closely (correlation coefficient >0.99):

$$
\begin{align*}
& K_{\mathrm{A}}^{\mathrm{app}}=K_{1}+K_{1} K_{2}[\text { DHNA }] \\
& \mathbf{5}+\mathrm{DHNA} \stackrel{K_{1}}{\rightleftarrows} \mathbf{5} \cdot \mathrm{DNHA} \tag{2}
\end{align*}
$$

$$
\mathbf{5} \cdot \mathrm{DNHA}+\mathrm{DNHA} \stackrel{K_{2}}{\rightleftarrows} \mathbf{5} \cdot(\mathrm{DHNA})_{2}
$$

Values of K_{1} and K_{2} for $\mathbf{4}$ and 5 complexing with several acids are in Table I and are consistent with literature values. ${ }^{3}$ For tweezers 1-3 one may relate $K_{A}^{\text {app }}$ to K_{1}, K_{2}, K_{3}, and [DHNA] by the equation

$$
\begin{align*}
& K_{A}^{\mathrm{app}}=2 K_{1}+\left(2 K_{1} K_{2}\right. \\
&\left.+K_{1}\right)^{2}[\mathrm{C}]+2 K_{1}^{2} K_{2}[\mathrm{C}]^{2} \tag{3}\\
&+K_{1}^{2} K_{2}^{2}[\mathrm{C}]^{3}+K_{3}\left(1+K_{2}[\mathrm{C}]\right)^{2}
\end{align*}
$$

Here K_{1} and K_{2} are as defined above and represent single and

4, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
5, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$

6, $n=8$
$7, n=10$

Table I. Association Constants (See Eq 2) of Alkyl Theophyllines

theophylline derivative	complexors	K_{1}, M^{-1}	K_{2}, M^{-1}
caffeine	DHNA a	432	28.2
$\mathbf{4}$	DHNA 2	365	25.7
$\mathbf{5}$	DHNA 2	296	16.7
7-butyltheophylline	DHNA 2	350	15.7
$\mathbf{4}$	DHBA a	45.2	6.7
$\mathbf{5}$	DHBA $^{\text {7-butyltheophylline }}$	DHBA	36.9

${ }^{a}$ DHNA = potassium 1,3-dihydroxy-2-naphthoate in pH 7 phosphate buffer. DHBA $=2,6$-dihydroxybenzoate in phosphate buffer.

Table II. Best Fit Sandwich Association Constant (K_{3}) Calculated According to Various Assumptions.

tweezer	entry	K_{1}, M^{-1}	K_{2}, M^{-1}	$\mathrm{~K}_{3}, \mathrm{M}^{-1}$	$\times 10^{-7}$
$\mathbf{1}$	a	365	25.7	21830	161
	b	365	45	10410	3.3
	c	693	26	10470	4.4
	d	477	37	10880	4.2
$\mathbf{2}$	a	330	21	10420	31.9
	b	330	35	5200	0.9
	c	535	21	4730	0.9
	d	416	28.5	5160	0.8
$\mathbf{3}$	a	296	16.7	47400	1190
	b	296	47.5	10400	27.4
	c	896	16.7	9400	27.4
	d	464	33.5	12570	28.8
$\mathbf{6}$	a	350	16	12140	108
	b	350	29.8	2800	5.0
	c	587	15.7	330	6.2
	d	472	21	1920	5.3
7	a	350	16	8900	40
	b	350	24	2420	6.0
	c	494	16	268	6.4
	d	409	20	1860	6.1

${ }^{a} K_{1}$ and K_{2} fixed at values found for monomers $\mathbf{4}$ or $\mathbf{5}$, or for mean of 4 and 5 for 2. ${ }^{b} K_{1}$ fixed at monomer value; K_{2} allowed to vary. Value of K_{2} shown is that one giving best fit of data. ${ }^{c} K_{2}$ fixed at monomer value; K_{1} allowed to vary. ${ }^{d}$ Both K_{1} and K_{2} allowed to vary, $\sim 100 \leq K_{1} \leq \sim 1000, \sim 10 \leq K_{2} \leq \sim 100$.
double complexation of the independently acting caffeine rings, K_{3} is the association constant for sandwich complexation (eq 1), and [C] is concentration of the water-soluble complexors. A typical plot of $K_{\mathrm{A}}^{\text {app }}$ vs. [C] for 3 is shown in Figure 1.

For a given K_{1}, K_{2}, and set of $K_{\mathrm{A}}^{\text {app }}$: C$]$ pairs, the method of least squares permits calculation of a best fit K_{3}. Data such as that in Figure 1 may be analyzed several ways as is shown in Table II. The following conclusions may be derived from these data. (1) The data are not explained by the assumption of independently acting rings with K_{1} and K_{2} values the same as
those of the monomers, Complexation is too strong. (2) The data are satisfactorily accounted for by invocation of K_{3}, the sandwich π-complex association constant, under several analyses of the data. Even here though (entry a), best fit requires that either K_{1} (entry c), K_{2} (entry b), or both (entry d) be somewhat higher than that for the monomer, For tweezer 3 a remarkably constant value of $K_{3}, 10^{4} \mathrm{M}^{-1}$, is obtained under the three methods of analysis, Similar results are seen for 1,1 and 1,2 tweezers. (3) Similar but substantially diminished results are seen for 6 and 7 , lacking the rigid diyne spacer, While best fit results are presented in Table II, it was noted that there were very broad error minima and that values of K_{1} and K_{2} for which the best $K_{3}=0$ had similar errors. Most accurately one can say that K_{3} is "small" for $\mathbf{6}$ and 7. It is clear that the diyne spacer plays an important role. Similar results are obtained with DHBA as complexor. (4) It is not crucial that the two caffeine rings be able to assume a parallel conformation. Tweezer 1, wherein the two ring cannot close to an angle of less than $\sim 30^{\circ}$, also yields a K_{3} of $10^{4} \mathrm{M}^{-1}$ for interaction with DHNA.

We consider the fact that a large K_{3} is necessary for explanation of our data to be strong support for the formation of tweezer-like complexes as in eq 1 . In this respect it is fascinating that the potent intercalator echinomycin ${ }^{\prime \prime}$ possesses a rigid tweezer-like structure. One may surmise that the rigid bicyclo peptide structure of this and related molecules plays an important role in its function. One may also suggest from our work that bifunctional intercalators ${ }^{12,13}$ should perhaps be constructed with a rigid rather than floppy connecting chain. ${ }^{14}$

References and Notes

(1) H. Kristiansen, M. Nakano, N. J. Nakano, and T. Higuchi, J. Pharm. Sci., 59, 1103 (1970).
(2) T. Higuchi and A. Drubulis, J. Pharm. Sci., 50, 905 (1961).
(3) T. Higuchi and K. A. Conners, Adv. Anal. Chem. Instrum., 4, 117 (1965).
(4) K. A. Connors and S.-R. Sun, J. Am. Chem. Soc., 93, 7239 (1971).
(5) For a general discussion of hydrophobic stacking interactions see ', Molecular Association in Biology", B. Pullman, Ed., Academic Press, New York and London, 1967.
(6) T. Higuchi and H. Kristiansen, J. Pharm. Sci, 59, 1601 (1970).
(7) These were synthesized by conventional procedures from theophylline by alkylation followed by oxidative dimerization or unsymmetrical Ca -diot-Chodkiewicz coupling: $1, \mathrm{mp} 260{ }^{\circ} \mathrm{C} ; 2, \mathrm{mp} 217-221^{\circ} \mathrm{C} ; 3, \mathrm{mp}$ $197.5-200^{\circ} \mathrm{C}$ (uncorrected). All new compounds furnished statisfactory elemental and spectral analyses.
(8) A. L. Thakkar, L. G. Tensmeyer, R. B. Hermann, and W. L. Wilham, Chem. Commun., 524 (1970).
(9) M. J. Waring, L. P. G. Wakelin, and J. S. Lee, Biochim. Biophys. Acta, 407, 200 (1975).
(10) Org. Synth., 25, 74 (1945).
(11) H. T. Cheung, J. Feeney, J. C. K. Roberts, D. H. Williams, G. Ughetto, and M. J. Waring, J. Am. Chem. Soc., 100, 46 (1978).
(12) R. M. Fico, T. H. Chen, and E. S. Canellakis, Science, 198, 53 (1977).
(13) P. B. Dervan and M. M. Bekcer, J. Am. Chem. Soc., 100, 1968 (1978).
(14) Partial support of this work by NSF and NIH is gratefully acknowledged.

C.-W. Chen, H. W. Whitlock, Jr.*
Department of Chemistry
University of Wisconsin-Madison Madison, Wisconsin 53706
Received March 17, 1978

